Research

Research on the bilberry has been carried out both in Finland and in other countries. Bilberry's nutritional content, health effects, ecological and physiological properties, berry crops as well as different factors affecting berry yields have been investigated in the following studies:

Arevström, L., Bergh, C., Landberg, R., Wu, H., Rodriguez-Mateos, A., Waldenborg, M., Magnuson, A., Blanc, S. & Fröbert, O. 2019. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: an open-label randomized clinical trial. Nutrition Research 62: 13-22. https://doi.org/10.1016/j.nutres.2018.11.008

Bao, L., Abe, K., Tsang, P., Xu, J-K., Yao, X-S., Liu H-W. & Kurihara, H. 2010. Bilberry extract protect restraint stress-induced liver damage through attenuating mitochondrial dysfunction. Fitoterapia 81(8): 1094-1101. https://doi.org/10.1016/j.fitote.2010.07.004

Burdulis, D., Sarkinas, A., Jasutiene, I., Stackevicene, E., Nikolajevas, L. & Janulis, V. 2009. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol Pharm. 66(4): 399-408. https://pubmed.ncbi.nlm.nih.gov/19702172/

Chan, S.W. & Tomlinson, B. 2020. Effects of bilberry supplementation on metabolic and cardiovascular disease risk. Molecules 2020, 25(7), 1653. https://doi.org/10.3390/molecules25071653

Dróżdż, P., Šėžienė, V. & Pyrzynska, K. 2017. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods for Human Nutrition 72: 360–364. https://doi.org/10.1007/s11130-017-0640-3

Eliasson, L., Oliveira, G., Ehrnell, M., Höglund, E. & Alminger, M. 2019. Tailoring bilberry powder functionality through preprocessing and drying. Food Science & Nutrition 7(4): 1379-1386. https://doi.org/10.1002/fsn3.972 

Habanova, M., Saraiva, J.A., Haban, M., Schwarzova, M., Chlebo, P., Predna, L., Gazo, J. & Wyka, J. 2016. Intake of bilberries (Vaccinium myrtillus L.) reduced risk factors for cardiovascular disease by inducing favorable changes in lipoprotein profiles. Nutrition research 36: 1415-1422. http://dx.doi.org/10.1016/j.nutres.2016.11.010

Hajazimi, E., Landberg, R. & Zamaratskaia, G. 2016. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet. LWT - Food Science and Technology 74: 128-134. https://doi.org/10.1016/j.lwt.2016.07.034

Helmstädter, A. & Schuster, N. 2010. Vaccinium myrtillus as an antidiabetic medicinal plant - research through the ages. Pharmazie. 65(5): 315-21. PMID: 20503920. https://pubmed.ncbi.nlm.nih.gov/20503920/

Hellström, J.K., Törrönen, R. & Mattila, P.H. 2009. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 57: 7899-7906. https://doi.org/10.1021/jf901434d

Huttunen, S., Toivanen, M., Arkko, S., Ruponen, M. & Tikkanen-Kaukanen, C. 2011. Inhibition activity of wild berry juice fractions against Streptococcus pneumoniae binding to human bronchial cells. Phytotherapy Research 25:122-127. https://doi.org/10.1002/ptr.3240

Karlsen, A., Paur, I., Bøhn, S.K., Sakhi, A.K., Borge, G.I., Serafini, M., Erlund, I., Laake, P., Tonstad, S. & Blomhoff, R. 2010. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. European Journal of Nutrition 49: 345-355. https://doi.org/10.1007/s00394-010-0092-0 

Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K. & Kobori, M. 2003. Induction of Apoptosis in Cancer Cells by Bilberry (Vaccinium myrtillus) and the Anthocyanins. J. Agric. Food Chem. 51: 68–75. https://doi.org/10.1021/jf025781x

Kilpeläinen, H., Miina, J., Store, R., Salo, K. & Kurttila, M. 2016. Evaluation of bilberry and cowberry yield models by comparing model predictions with field measurements from North Karelia, Finland. Forest Ecology and Management 363: 120-129. https://doi.org/10.1016/j.foreco.2015.12.034

Kolehmainen, M., Mykkänen, O., Kirjavainen, P.V., Leppänen, T., Moilanen, E., Adriaens, M., Laaksonen, D.E., Hallikainen, M., Puupponen-Pimiä, R., Pulkkinen, L., Mykkänen, H., Gylling, H., Poutanen, K. & Törrönen, R. 2012. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Molecular Nutrition & Food Research 56: 1501-1510. https://doi.org/10.1002/mnfr.201200195

Koponen, J.M., Happonen, A.M., Mattila, P.H. & Törrönen, A.R. 2007. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 55: 1612-1619. https://doi.org/10.1021/jf062897a

Lehtonen, H-M., Suomela, J-P., Tahvonen, R., Vaarno, J., Venojärvi, M., Viikari, J. & Kallio, H. 2010. Berry meals and risk factors associated with metabolic syndrome. European Journal of Clinical Nutrition 64: 614–621. https://doi.org/10.1038/ejcn.2010.27

Lätti, A.K., Riihinen, K.R. & Kainulainen, P.S. 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56: 190–196. https://doi.org/10.1021/jf072857m

Manninen, O. & Peltola, R. 2019. Continuous picking may increase bilberry yields. Silva Fennica vol. 53 no. 3 article id 10043. DOI:10.14214/sf.10043

Matsunaga, N., Imai, S., Inokuchi, Y., Shimazawa, M., Yokota, S., Araki, Y. & Hara, H. 2009. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Molecular Nutrition & Food Research 53: 869–877. https://doi.org/10.1002/mnfr.200800394

Misikangas, M., Pajari, A-M., Päivärinta, E., Oikarinen, S.I., Rajakangas, J., Marttinen, M., Tanayama, H., Törrönen, R. & Mutanen, M. 2007. Three Nordic berries inhibit intestinal tumorigenesis in multiple intestinal neoplasia/+ mice by modulating beta-catenin signaling in the tumor and transcription in the mucosa. J. Nutr. 137(10): 2285-2290. https://doi.org/10.1093/jn/137.10.2285

Mykkänen, O., Kalesnykas, G., Adriaens, M., Evelo, C., Törrönen, R. & Kaarniranta, K. 2012. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice. Molecular Vision 18(247):2338-51. https://pubmed.ncbi.nlm.nih.gov/22993483/

Mykkänen, O., Huotari, A., Herzig, K-H., Dunlop, T.W., Mykkänen, H. & Kirjavainen, P. 2014. Wild Blueberries (Vaccinium myrtillus) Alleviate Inflammation and Hypertension Associated with Developing Obesity in Mice Fed with a High-Fat Diet. PLoS ONE 9(12):e114790

Mykkänen, O., Kirjavainen, P., Pulkkinen, L., Mykkänen, H., Törrönen, R., Kolehmainen, M., Adriaens, M., Laaksonen, D., Puupponen-Pimiä, R. & Poutanen, K. 2014. Reduction of subacute endotoxemia could mediate beneficial effects of vaccinium myrtillus in metabolic syndrome - A PBMC gene expression study. Acta Horticulturae 1017. DOI:10.17660/ActaHortic.2014.1017.45

Määttä-Riihinen, K.R., Kamal-Eldin, A., Mattila, P.H., González-Paramás, A.M. & Törrönen, A.R. 2004. Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J. Agric. Food Chem. 52(14): 4477-4486. https://doi.org/10.1021/jf049595y

Nuortila, C. 2007. Little variation in fruit/flower ratio between years in two ericaceous dwarf shrubs, Vaccinium myrtillus and Vaccinium vitis-idaea. Manuscript. In: Nuortila, C. 2007. Constraints on sexual reproduction and seed set in Vaccinium and Campanula. Academic dissertation. Acta Universitatis Ouluensis A 489. http://jultika.oulu.fi/files/isbn9789514285004.pdf

Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R. & Voutilainen, S. 2009. Metabolism of Berry Anthocyanins to Phenolic Acids in Humans. J. Agric. Food Chem. 57: 2274–2281. https://doi.org/10.1021/jf8035116

Oliveira, G., Eliasson, L., Ehrnell, M., Höglund, E., Andlid, T. & Alminger, M. 2019. Tailoring bilberry powder functionality through processing: Effects of drying and fractionation on the stability of total polyphenols and anthocyanins. Food Science & Nutrition 7(3): 1017-1026. https://doi.org/10.1002/fsn3.930

Onali, T., Kivimäki, A., Mauramo, M., Salo, T. & Korpela, R. 2021. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants 2021, 10, 850. https://doi.org/10.3390/antiox10060850

Persson, I.A., Persson, K. & Andersson, R.G. 2009. Effect of Vaccinium myrtillus and its polyphenols on angiotensin-converting enzyme activity in human endothelial cells. J. Agric. Food Chem. 57(11): 4626–4629. https://doi.org/10.1021/jf900128s

Riihinen, K., Jaakola, L., Kärenlampi, S. & Hohtola, A. 2008. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chemistry 110: 156-160. https://doi.org/10.1016/j.foodchem.2008.01.057

Riihinen, K., Ryynänen, A., Toivanen, M., Könönen, E., Törrönen, R. & Tikkanen-Kaukanen, C. 2011. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii. Phytotherapy Research 25: 81-87. https://doi.org/10.1002/ptr.3228

Rimando, A.M., Kalt, W., Magee, J.B., Dewey, J. & Ballington, J.R. 2004. Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. J. Agric. Food Chem. 52: 4713-4719. https://doi.org/10.1021/jf040095e

Rodríguez, A. & Kouki, J. 2015. Emulating natural disturbance in forest management enhances pollination services for dominant Vaccinium shrubs in boreal pine-dominated forests. Forest Ecology and Management 350: 1-12. https://doi.org/10.1016/j.foreco.2015.04.029

Salamon, I., Şimşek Sezer, E.N., Kryvtsova, M. & Labun, P. 2021. Antiproliferative and Antimicrobial Activity of Anthocyanins from Berry Fruits after Their Isolation and Freeze-Drying. Appl. Sci. 11(5), 2096. https://doi.org/10.3390/app11052096 

Teller, N., Thiele, W., Marczylo, T.H., Gescher, A.J., Boettler, U., Sleeman, J. & Marko, D. 2009. Suppression of the kinase activity of receptor tyrosine kinases by anthocyanin-rich mixtures extracted from bilberries and grapes. J. Agric. Food Chem. 57(8): 3094 –3101. https://doi.org/10.1021/jf803094a

Tundis, R., Tenuta, M.C., Loizzo, M.R., Bonesi, M., Finetti, F., Trabalzini, L. & Deguin, B. 2021. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 11(12): 5655. https://doi.org/10.3390/app11125655

Turtiainen, M., Salo, K & Saastamoinen, O. 2007. Mustikan ja puolukan marjasatojen valtakunnalliset ja alueelliset kokonaisestimaatit Suomen suometsissä. (National and regional estimates of blueberry (Vaccinium myrtillus L.) and lingonberry (V. vitis-idaea L.) yields on peatlands in Finland.) Suo 58(3-4): 87-98. http://www.suo.fi/article/9857

Turtiainen, M. 2015. Modelling bilberry and cowberry yields in Finland: different approaches to develop models for forest planning calculations. Dissertationes Forestales 185. https://doi.org/10.14214/df.185

Turtiainen, M. 2021. Mustikka- ja puolukkasatojen vuotuisen vaihtelun ja talteenoton tarkastelua valtakunnallisesti ja Itä-Suomen alueella. (Examining annual variation and utilization of bilberry and cowberry yields nationally and in Eastern Finland.) Alue ja Ympäristö, 50(1), 4-27. https://doi.org/10.30663/ay.91510

Uleberg, E., Rohloff, J., Jaakola, L., Trôst, K., Junttila, O., Häggman, H. & Martinussen, I. 2012. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 60(42): 10406-10414. https://doi.org/10.1021/jf302924m

Vendrame, S., Del Bo’, C., Ciappellano, S., Riso, P. & Klimis-Zacas, D. 2016. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants 5(4): 34. https://doi.org/10.3390/antiox5040034

See also the following useful websites:

European Commission 2022. Nutrition and Health Claims.

Finnish Food Authority 2022. Health claims.

Finnish Institute for Health and Welfare 2022. Fineli – Finnish Food Composition Database. Blueberry, bilberry, Vaccinium myrtillus.

USDA 2014. Agricultural Research Service United States Department of Agriculture. National Nutrient Database for Standard Reference Release 26, Blueberries, raw

mustikkakasi.jpg